
Research Activities
at the

Software & Systems Engineering Lab

Prof. Andrea D'Ambrogio
University of Roma TorVergata

Roma (Italy)
dambro@uniroma2.it

www.sel.uniroma2.it

Outline
w Software and Systems Engineering Lab
w Research contributions

• Model-driven Approaches for:
§ Performance Engineering of Business Processes (BPs)

§ PyBPMN: a language to specify QoS properties of BPs
§ PyBPMN-driven method to predict performance and reliability properties

of BPs
§ Simulation Systems Engineering

§ Bridging the gap between MDE and DS
§ The conventional approach
§ The SimArch approach

• Model-based Interface Specification for Systems
Integration

dambro@uniroma2.it Research @SEL

! www.sel.uniroma2.it

w hosted at the Department of Enterprise Engineering of the
University of Rome Tor Vergata

w Research Topics
• software and systems performance engineering

• model-driven software and systems engineering

• business process management

• distributed simulation

• software and systems quality

dambro@uniroma2.it Research @SEL

Projects
w Methods for the engineering and evaluation of system performance and dependability

• GAAS Generic Approach to ATM Systems - EC DG XII
• DAAS Dependable Approach to ATM Systems - EC DG XIII
• PAMPAS Preliminary Approach for Modelling Performance of ATM Systems – EUROCONTROL
• Automated building of predictive models for performance validation – MIUR FIRB
• SS&PSW Methods for the development of dependable complex software platforms - MAP-SELESO

w Strategies and tools for system validation
• EVAS EATMS Validation Strategy – EUROCONTROL
• VALERY Study for the Development of a Validation Data Repository – EUROCONTROL
• EPVDR Enhanced Prototype Validation Data Repository - EUROCONTROL

w Methods and tools for model-driven systems engineering
• OATA Overall ATM Target Architecture – EUROCONTROL
• SysML-based Model-driven System Development – Elettronica SpA

w Software projects cost estimation and verification
• Software Acquisition Assessment - ENAV

w E-government information systems
• INAIL Information System Quality Assessment - INAIL
• Adequacy Assessment of Computing Facilities and Network Services – ICE
• Requirements Engineering for Public Lighting Energy Efficiency – ISIMM-ENEA

w Distributed and web-based simulation
• Integration of HLA and Web Services for web-based and distributed simulation – MIUR FIRB
• HRAF: EDLS Distributed Simulation Federation and Model-driven Engineering Framework Development – ESA-

GMV
• MASTER: Modeling and Simulation as a Service for Training and Experimentation – Italian MoD National Plan

for Military Research

dambro@uniroma2.it Research @SEL

Other projects/activities
w FP7 DAEMONS (DEcentralized, cooperative, and privacy-preserving MONitoring for

trustworthiness)
• publish&subscribe approaches for implementing the coordination middleware

w ESA (European Space Agency) Summer of Code in Space 2013
• ICML (Interface Communication Modeling Language)

w ProSys (POR FESR Lazio)
• Adaptive Business Process Management System

w ALADDIN (Autonomous Learning Agents for Decentralised Data and Information
Networks)

• Agent-based M&S [software: SimJADE, DisSimJADE]
w euHeart (in Virtual Physiological Human)

• Model Databasing [software: AMDB]
w Galileo

• Architectural Modelling
w Space Situational Awareness

• Data Policy modelling, definition and verification
w GMES-PURE

• GMES Partnership for User Requirements Evolution
w Jason-CS / EPS-SG

• Requirements Management

dambro@uniroma2.it Research @SEL

Model-driven Engineering (MDE)
w Enabler of automation
w Key elements

• a language to specify metamodels (i.e., a
metametamodel)

• a language to specify model
transformations

w Incarnations
• MDA, MIC, Software Factories

dambro@uniroma2.it Research @SEL

MDA in a nutshell

MOF
Meta-Model

MMb
Metamodel

Ma XMI
documents

MMa
XMI Schema

MMb
XMI Schema

Meta Modeling
Layer
(technology
independent)

Model
Implementation
Layer
(technology
specific)

M3

M2

M1

model flow

instance of

data flow

validated by

XMI

XMIXMI

XMIMMa
Metamodel

Mb XMI
documents

Transformation
Engine

Transformation
Specification

Ma
Models

Mb
Models

QVT

dambro@uniroma2.it Research @SEL

Model-driven Approaches
for

Performance Engineering
(in the BPM domain)

w The term Business Process (BP) refers to the
set of activities that companies and
organizations carry out to provide services or
produce goods

w A BP can be seen as a an orchestration of
tasks, each one related to the automated or
human resources in charge of its execution

Our contribution focuses on fully automated BPs
executed as orchestrations of software services

Business processes

dambro@uniroma2.it Research @SEL

w The set of methods, techniques and software to design,
enact, control and analyze operational processes
involving humans, organizations, applications,
documents and other sources of information [van der
Aalst et. al., 2003]

Business Process Management (BPM)

BP lifecycle

BP implementation
cycle

dambro@uniroma2.it Research @SEL

CHAPTER 2. DESCRIPTION AND ANALYSIS OF BP: STATE-OF-THE-ART 11

diagnosis

process
design

system
configuration

process
enactment

Figure 2.1: Business Process Management life cycle [81]

regarding the definition of business process lifecycle, such as [20, 81, 85]. As an

example Figure 2.1 illustrates the one proposed in [81], which includes the following

phases:

1. Process Design: the phase that deals with the specification and design (or re-

design) of a business process.

2. System Configuration: the phase in which the designed process is implemented

into a Business Process Management System (BPMS), that is business a process

execution engine or, more generally, a process aware information system used to

automatically execute and monitor the process.

3. Process Enactment: the phase in which the implemented process in executed on

top of a BPMS.

4. Diagnosis: this phase that includes the analysis of the business process to iden-

tify bottlenecks and define strategies to redesign and improve the process.

While BPM is generally referred to all the aforementioned activities, in this work

we focus on the description of a BP and the use of such description for analyzing

w From an IT perspective, BPM is
related to BP automation
• SOA standards define a

framework that allows the
composition of atomic services
to define and execute higher
level business processes

• Web services represent a set of
technologies needed to define
and invoke remote software
services

The automated execution of tasks within a
BP can be based on SOA standards

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Business Process specification and execution

measures the monetary gain/loss, is strictly related to quality of service (QoS) issues,

which instead measure non functional properties such as performance, reliability,

availability and security [39]. Indeed, the relationship between QoBiz and QoS is

concretized by Service Level Agreements (SLAs) that specify the costs and penalties

with respect to the delivered QoS [39, 47]. This means that the revenue or loss of

a business process depends on the QoS provided by the service orchestration that

implements it.

While BPM is generally referred to the several activities that define the BP lifecy-

Business processes and SOAs

dambro@uniroma2.it Research @SEL

Our contribution
Objective
w Definition of an approach to describe and analyze

the QoS of BPs by:
• exploiting model-driven approaches
• encompassing each stage of the BP implementation cycle,

from the abstract design down to the execution

Contributions
1. Description perspective: PyBPMN, a language to specify the

QoS properties of BPs
2. Analysis perspective: A PyBPMN-driven method to predict,

at design time, performance and reliability properties of BPs

dambro@uniroma2.it Research @SEL

Reliability

Performance

The ability of a process to perform correctly its
required tasks in a given time interval

BP domain:
Key Performance Indicators (KPIs): a set of
measures that focus on critical aspects of
organizational performance

IT domain:
time-related properties such as throughput,
response times and resource utilization

QoS properties: performance and reliability

dambro@uniroma2.it Research @SEL

w We introduce Performability-enabled Business Process Modeling
Notation (PyBPMN), a language to specify QoS properties of BPs

w PyBPMN has been designed as an extension of the Business Process
Modeling Notation (BPMN), the standard language for business
process modeling promoted by OMG

w According to MDA the extension process:
• leverages on MOF (Meta Object Facility) and XMI (XML Metadata Interchange)
• is based on a metamodel extension

w The extension specifically addresses:
• Performance modeling: UML Profile for Modeling and Analysis of Real-Time

Embedded systems (MARTE)
• Reliability modeling: research contributions that add the description of

reliability properties to MARTE [Petriu, Bernardi and Merseguer, 2008]

Modeling QoS properties of a BP: PyBPMN

dambro@uniroma2.it Research @SEL

BPMN extension process

dambro@uniroma2.it

CHAPTER 3. PERFORMABILITY-ENABLED BPMN(PYBPMN) 37

BPMN
Metamodel

PyBPMN
Metamodel

Metamodel
Extension

BPMN
Model

PyBPMN
Model

PyBPMN
XMI Schema

PyBPMN
XMI Documentl

M1: Model Layer

<<Instance of>> <<Instance of>> <<Instance of>>

MOF
Model

XMI Document
Production Rules

<<Instance of>> <<Instance of>>

M2: Metamodel Layer

M3: Meta-meetamodel Layer

XMI Schema
Prodcuction Rules

Figure 3.1: PyBPMN extension process

in the extension process. A complete description of the BPMN metamodel is out of

the scope of this thesis. For a complete description the reader is sent to the BPMN

specification [57]. A BPMN process is graphically represented by use of a Business

Process Diagram (BPD) that defines the execution semantics as a graph in which

nodes are flow objects (i.e., events, activities and gateways) and arcs are connecting

objects (i.e., sequence flows and message flows). The most relevant elements in the

BPMN metamodel are the metaclasses Process, MessageFlow, FlowNode and Se-

quenceFlow. The Process metaclass inherits from FlowElementContainer metaclass

and models the sequence of flow elements (e.g., activities) in a process. Note that

while a Process instance is specifically used to represent set of flow elements, the

interaction between processes is represented by use of instances of the Collaboration

metaclass. The MessageFlow metaclass is used to represent the interaction that takes

place as exchange of messages between two participants within a collaboration.

Research @SEL

BPMN is a standard for the high-level specification of business processes

C
H

A
PTER

3.
PERFO

RM
A

BILITY-EN
A

BLED
BPM

N
(PYBPM

N
)

39

sourceRef

BaseElement

FlowElement

FlowNode

Event

ThrowEvent CatchEvent

SequenceFlow

targetRef1

1

incomingoutgoing* *

Gateway

EndEvent

IntermediateThrowEvent

StartEvent

IntermediateCatchEvent

Activity

Task

ServiceTaskSendTask ReceiveTask

default

1

0..1

RootElement

OperationMessage

Interface

inMessageRef

outMessageRef
*
*

1
1

1

1..*

Collaboration Conversation

InteractionSpecification

Participant

*0..1
conversation

MessageFlow

1

*

*

*

conversationRef

messageRef

0..1

**

1
partecipant messageFlow

FlowElementContainer

1

*

Process

LaneSet

definitionalCollaborationRef
0..1

*

*

0..1

Lanelanes
laneSet

*1
lanes

1

flowElementsRef
1

0..1

0..1

parentLane

childLaneSet

* * *

0..1

0..1 0..1

operationRef
operationRef operationRef

Figure 3.2: MOF metamodel of BPMN

BPMN: Business Process Model and Notation

dambro@uniroma2.it Research @SEL

Workload
characterization

Performance/reliability
characterization

PyBPMN extension details






























 












 
















































 














 

dambro@uniroma2.it Research @SEL

C
H

A
PTER

4.
A

M
D

M
ETH

O
D

FO
R

PRED
IC

TIN
G

TH
E

Q
O

S
O

F
BPS

48

!"#$!%&
%'()*

!"#$%&##'
()*+&##'

,-&+$.$+/0$*%

1"%+0$*%/2
3&4"$)&5&%0#

6*%71"%+0$*%/2
3&4"$)&5&%0#

(8!(9670*7:9;
9*<&2

=)/%#.*)5/0$*%

(8!(9670*7!(>;
9*<&2

=)/%#.*)5/0$*%
$!+,

-./012/10)3

,&)?$+&'
@$#+*?&)8

,&)?$+&
3&A$#0)8

B<&%0$.$+/0$*%'*.
C/%<$</0&'

C*%.$A")/0$*%#

(&).*)5/D$2$08
()&<$+0$*%

,&)?$+&'!$%<$%A

8&#

%*

4)56./0"
+78160"

9%,
:

;'<%,#%=4>+
-4)8160)?)7/.@A
;)0B62)@C'.@.D)2E@3

:9;70*7;E6'
9*<&2

=)/%#.*)5/0$*%

,C&@%'()*

(&).*)5/%+&
>?/2"/0$*%

(&).*)5/D$2$08
>?/2"/0$*%

3&2$/D$2$08
>?/2"/0$*%

%*

8&#

E*,'3&4"$)&5&%0#'
#F*"2<'D&')&?$#&<

()&<$+0$*%
*GH

D)0F'0?<G6*6/"
67(62).

$!+,
-./012/10)@@A

.)0B62)@G67(6753

9%,
:

;'<%,#%=4>+
-4)8160)?)7/.@A
;)0B62)@C'.@.D)2E@3

9%,
:

;'<%,#%=4>+
-4)8160)?)7/.3

H76/6<*
I'7F6510</6'7

I0F&)
+/%<$</0&'#&)?$+&#

/?/$2/D2&H

!"#$%&##'()*+&##
>J&+"0$*%

CJ;K,

Figure 4.1: Method for performability prediction at design time

Model-driven method to predict
QoS properties of BPs

dambro@uniroma2.it Research @SEL

Let us consider a business process that provides a service for
creating travel plans. The process makes use of the following
services:

BP modeling by use of PyBPMN Example



























































































w Flight Manager
(FM) service

w Accommodation
Manager (AM)
service

w Transportation
Manager (TM)
service

dambro@uniroma2.it Research @SEL

PyBPMN-to-UML model transformation
Example









































































































dambro@uniroma2.it Research @SEL


















































Service discovery retrieves the QoS-enabled
descriptions of candidate services

Parameter TMA TMB

Performance CarReservation time demand 120 ms 90 ms

CabInfo time demand 115 ms 84 ms

Network bit rate 10 Mb/s 100 Mb/s

Reliability MTTF 7900 hours 5100 hours

Service discovery
Example

• TMA provides better reliability properties
• TMB provides better performance properties

Problem: no win-win, which one is to be selected?

dambro@uniroma2.it Research @SEL

w In general, the service discovery step gives as output more than a single concrete
service for each abstract service

w Each possible binding leads to a candidate configuration (CC)
w Problem: how to select the initial configuration (IC) among the available CCs?

Identification of candidate configurations

CHAPTER 4. A MD METHOD FOR PREDICTING THE QOS OF BPS 52

1

2 3

4

Abstract Process

A

D
C

B
E

Available Concrete
Services

A

B C

D

A

B E

D

Candidate Configurations

Figure 4.2: Identification of candidate configurations after service discovery

UML
+

SoaML-MARTE
(Requirements &

Service Qos spec.)

UML-to-LQN
Model

Transformation

LQN Model

Performance
Evaluation

Performability
Evaluation

Reliability
Evaluation

performability
indices

Figure 4.3: Identification of candidate configurations after service discovery

given.

The transformation takes as input the PyBPMN model and yields as output an

implementation-oriented UML model that gives a standard description of the SOA-

based orchestration implementing the business process. The UML model is anno-

tated according to both the SoaML profile [54] , to define the SOA-based architecture

specification, and the MARTE profile [55], to specify the performability properties.

The translation of a BPMN-based description into a UML-based representation is

essential to obtain a standard UML-based design model of the underlying service-

oriented system. Moreover, the use of UML makes it possible to take advantages

of previous contributions [6, 9, 19] that provide model-driven methods for auto-

matically building performance and reliability models, as detailed in Sections 4.4

The IC is selected by use of a performability prediction algorithm

dambro@uniroma2.it Research @SEL

BP Implementation MTTF
Candidate Configuration with TMA 2163 hours

Candidate Configuration with TMB 1918 hours

Performance Prediction

Performance and Reliability predictions
Example

choose CC(TMB) as IC

Reliability Prediction

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

*!!!"

+!!!"

!" #!" $!" %!" &!" '!" (!"

!"
#$
%&"

'(
)
"'
*)

!"
&+
'

,!"#!'

,,-./012"
,,-./032"

choose CC(TMA) as IC

dambro@uniroma2.it Research @SEL

w Performability is the joint analysis of performance and
reliability

w Performance and reliability predictions are used to obtain
the performability prediction, as follows:

w For each candidate configuration CCk (k=1..n):
1. CCk is assumed to be the initial configuration (IC)
2. The reliability prediction is used to evaluate P(CCi), the probability

to be in CCi starting from the assumed IC
3. The performance prediction is used to obtain T(CCi) and assign it as

a reward to CCi

4. The performability prediction is obtained in terms of the expected
reward rate of IC, given by:

RW (IC) = P (CCi) T (CCi)
i=1

n

∑

Performability prediction

dambro@uniroma2.it Research @SEL

Step 5.3: Performability prediction -
Example

Performability Prediction

!"

!#!!!$"

!#!!!%"

!#!!!&"

!#!!!'"

!#!!!("

!#!!!)"

!#!!!*"

$" (" $!" $(" %!" %(" &!" &(" '!" '(" (!"

!"
#!

$%
!&

'(!
)
*(
&'
(*
%!
'

+,!(,'

++,-./01"

++,-./21"

choose CC(TMB) as IC

dambro@uniroma2.it Research @SEL

Model-driven Approaches
for

Simulation Systems Engineering

Simulation for Systems Engineering

w The validation of complex systems from the early

development phases (lifecycle validation) can be effort- and
time-consuming

w Modeling & Simulation (M&S) is widely recognized as an

effective and powerful tool for lifecycle validation of

systems, but:

• M&S methods must scale with growth and evolution of complex

systems and ecosystems (e.g., SoS or ULS)

dambro@uniroma2.it Research @SEL

Our contribution

w How to enable M&S methods that take into
account the peculiar
complexity/scalability/evolvability of complex
systems?

The proposed solution exploits model-driven

approaches for the effortless development of complex

distributed simulation systems

dambro@uniroma2.it Research @SEL

Useful definitions
w System Under Study (SUS)

• the system that has to be simulated to get insights into or to predict its
behaviour

• typically specified at development time by use of system models

w Simulation Engineering:
• the set of activities to be carried out first to build a simulation model of the

SUS and then to implement it into a simulation system, i.e., a software
system that “executes” the model onto a given centralized or distributed
platform.

w Local Simulation (LS) System
• A simulation system deployed onto and executed by a single host

w Distributed Simulation (DS) system
• A simulation system that consists of a set of sub-systems deployed onto and

executed by a set of geographically distributed hosts

dambro@uniroma2.it Research @SEL

Distributed Simulation (DS)

w The term distributed is interpreted in the sense of
traditional distributed computing (e.g., based on the C/S
paradigm)

w Goal
• synchronize and coordinate remote simulation programs

w Benefits
• Geographical distribution
• Integrating simulators from different manufacturers
• Reusability
• Load balancing
• Fault tolerance

dambro@uniroma2.it Research @SEL

High Level Architecture (HLA)
w IEEE standard 1516
w Main elements

• Federate: a remotely-
accessible simulation sub-
system

• Federation: the overall DS
system, composed of a set
of Federates

• RTI: provides
communication and
coordination services to the
Federates that join into a
Federation

Federate

RTI Ambassador

Federate Ambassador

Runtime Infrastructure (RTI)

dambro@uniroma2.it Research @SEL

MDE and DS
Opportunities

w MDE (Model Driven Engineering) is finding increasing
acceptance in the development of complex systems:
• enabler of reuse
• high degree of automation

w DS systems are inherently complex:
• intrinsic concurrency
• required interoperability
• intricacies of currently available DS platforms
• the Green Elephant risk

w MDE provides a promising approach for supporting the
development of DS systems of higher quality at largely
reduced time, effort and cost

dambro@uniroma2.it Research @SEL

MDE and DS
Challenges

w On the DS side:
• code-centric approaches
• development process:

§ not standardized (only FEDEP/DSEEP recommendations)
§ often not starting from scratch
§ often requiring the integration of legacy subsystems

• interoperability is only dealt with at syntactic level
• support for simulation-in-the-loop is limited

w On the MDE side:
• model-centric approach
• tool support for defining and orchestrating model

transformations is still very limited
• modeling languages strongly influenced by UML

dambro@uniroma2.it Research @SEL

MDE for DS system development
from cogitative to generative approaches

SysML model
of the SUS

Simulation
Model

DS system
code

dambro@uniroma2.it Research @SEL

Bridging the gap between MDE and DS
w Two approaches

1. The conventional one
§ applies a conventional MDA process to the development

of DS systems
§ based on top-down refinement
§ the platform is the DS standard (+ its implementation)

2. The simulation-enabled (or SimArch) one
§ introduces the SimArch technology to facilitate the model-

driven development of DS systems
§ based on bottom-up abstraction
§ the platform is the domain-specific language of the

simulation model

dambro@uniroma2.it Research @SEL

1. The conventional approach
w It is based on the standard MDA process
w Obtains the benefits of MDE approaches
w Requires:

• The appropriate marking of the system PIM (by use of the
Model-View-Controller pattern)

• The choice of a specific DS infrastructure (e.g., HLA)
• The introduction of an UML extension (Profile) for annotating

UML models with DS infrastructure details
• The specification of a PIM (SUS model) to PSM (simulation

model) model-to-model transformation
• The choice of a given DS implementation
• The specification of a PSM to code model-to-text transformation

dambro@uniroma2.it Research @SEL

HLACloud Framework

dambro@uniroma2.it

w System model
• specified in SysML

w DS
• implemented in HLA

w DS execution
• carried out on
PlanetLab

Research @SEL

Rationale

dambro@uniroma2.it Research @SEL

Model-driven Process

dambro@uniroma2.it

w based on DSEEP
• IEEE Recommended Practice for

Distributed Simulation Engineering and
Execution Process

w M2M transformation
• SysML-to-HLA

§ from SysML to HLA-based UML

w M2T transformations
• HLA-to-Code

§ HLA-based UML to HLA code
• HLA-to-Plab

§ from HLA-based UML to PLab configuration

w Modeling Extensions
• SysML4HLA Profile

§ for SysML annotation
• HLA Profile

§ for HLA-based UML annotation

Research @SEL

Example Application (structure)

dambro@uniroma2.it Research @SEL

SysML Model (BDD)

dambro@uniroma2.it Research @SEL

Example Application (behavior)

dambro@uniroma2.it

Gyroscope Control
Logic

Position
Sensor

GPS

Aileron

Elevator

Research @SEL

SysML Model (SDs)

dambro@uniroma2.it Research @SEL

HLA-based UML Model (CD)

dambro@uniroma2.it Research @SEL

HLA-based UML Model (SDs)

dambro@uniroma2.it Research @SEL

Java/HLA code (portion)

dambro@uniroma2.it Research @SEL

2. The SimArch approach
w Hides the local/distributed nature of the

simulation system
w Hides the details of the specific DS infrastructure

(e.g., HLA)
w Eases the switch between LS/DS systems
w Bridges the gap between the simulation model

and its implementation (i.e., the DS/LS simulation
system)

w Only requires mapping the PIM of the SUS to the
simulation model

dambro@uniroma2.it Research @SEL

SimArch
w A layered architecture to enable the model-driven

development of DS systems:
• transparent deployment of simulation components in

either a local or a distributed environment

• transparent introduction/modification of the layers’
implementation to meet additional/specific requirements

• definition of custom (domain-specific) simulation
languages on top of the layered architecture

• support for simulation-in-the-loop approaches

dambro@uniroma2.it Research @SEL

SimArch Main Features
w Multiparadigm simulation environment

• process interaction DES paradigm

• agent-based modelling paradigm

w Composed of four layers

w Provides the definition of:
• Service interfaces

• Data interfaces

• Factory interfaces for component instantiation

dambro@uniroma2.it Research @SEL

SimArch
Layers

Distributed Discrete
Event Simulation Layer

Discrete Event Simulation
Service Layer

Simulation Components
Layer

Simulation Model Layer

Layer 0

Layer 1

Layer 2

Layer 3

Layer 4

Distributed Computing
Infrastructure

HLA
DIS

CORBA

WSGrid

General Purpose Simulation Oriented

dambro@uniroma2.it Research @SEL

SimArch implementation status

w Layer 1
• DDESoverHLA library: provides a DES abstraction on

top of HLA
w Layer 2

• SimJ library: provides generic simulation components
• SimJ can be seen as a metamodel for defining domain

specific simulation languages
w Layer 3

• jEQN library: provides the primitives for defining EQN
simulation models

dambro@uniroma2.it Research @SEL

Domain Specific Languages (DSLs)
w Programming language
w Domain-specificity
w Increased expressiveness (decreased generality)
w Ease-of-use
w Reduced domain and programming expertise
w Verificability and transformability
w Declarative
w Enabler of reuse

dambro@uniroma2.it Research @SEL

jEQN: a DSL for EQNs
w Based on:

• Domain analysis of EQN models
• Declarative approach (specify what to simulate rather then how

to simulate)

w Used to:
• Reduce the semantic gap between the model specification and

the corresponding LS/DS system

w Composed of:
• Simulation services defined by SimArch
• Set of EQN simulation components
• Set of parameters for the components

dambro@uniroma2.it Research @SEL

Example Application Domains
w Computer networks domain

• Distributed Computer systems simulation

• Wireless systems simulation

w Space systems domain

• Ground Segment simulation

w Emergency management domain

• Building Evacuation simulation

dambro@uniroma2.it Research @SEL

Example federates deployment

WAN

GATech's
LAN

Lecce

HLA over IIOP

SimLab

Executive

HLA over IIOP

US - Georgia Italy

Server

Local

HLA over IIOP

Federate

Key

pRTI 1516

CORBA + CORBA-HLA

IIOP protocol

Pitch protocol over TCP and UDP

Georgia Tech

CORBA-HLA
Client

Federation
Manager SimArch

CORBA-HLA
Client

jEQN
Simulator

SimArch

CORBA-HLA
Client

jEQN
Simulator

SimArch

CORBA -HLA
Client

jEQN
Simulator

SimArch

CORBA-HLA
Client

jEQN
Simulator

TorVergata
CORBA RTI Server

Ascoli

Camerino

SimArch

CORBA-HLA
Client

jEQN
Simulator

SimArch

CORBA -HLA
Client

jEQN
Simulator

dambro@uniroma2.it Research @SEL

Conventional vs. SimArch
Features Conventional Approach SimArch Approach

Choice of DS Platform Required Not required

Choice of DS Implementation Required Not required

DSL-based No Yes

PIM (SUS) to PSM Required (multiple) Required (single)

PSM to Code Required Not required

Effort Savings High Very High

Maintainability High Very High

Reusability High Very High

Adaptability Low Very High

DS expertise Low Very Low

dambro@uniroma2.it Research @SEL

Model-based Interface Specification for
Systems Integration

w The engineering of complex systems requires a
careful consideration of the interactions among
sub-systems and components

w Such interactions may reveal significant anomalies
at system integration time

w Interface problems are even exacerbated in net-
centric complex systems, or systems of systems,
due to the heterogeneity and dynamicity of
constituent sub-systems and systems

dambro@uniroma2.it Research @SEL

ICML
(Interface Communication Modeling Language)

w A model-based language that can be used to graphically and
unambiguously specify data interfaces, thus contributing to support
the design of interoperable data communication systems

w Designed on a preliminary domain analysis on radio signal
specifications (Time-Division Multiplexed signals)

w Developed within the ESA SOCIS (Summer of Code in Space)
program - 2012 and 2013 editions

w Applied to:
• Galileo receivers engineering, for supporting the reuse of existing HW and

SW resources;
• Service Systems Engineering for the Galileo Open Service signal-in-space

interface specification
w Further info on:

sites.google.com/site/icmlmodellinglanguage/

dambro@uniroma2.it Research @SEL

ICML Specification

be similarly represented as a UML Class; and an instance of a profile Class can be represented
as a specialization of the profile Class.

UML models can be serialized into XML format by use of XMI (Object Management Group,
2011), thus allowing UML models to be easily shared among heterogeneous software tools.

Interface Communication Modelling Language (ICML)
With the purpose of supporting systems integration in systems of systems, using model-based
approaches, we are designing ICML, a UML-based language for model-based specification of
interfaces, thus having the potential of merging with other UML and SysML diagrams. As
such, ICML guides systems engineers to specify interfaces, defining concepts to be instantiated
and defining relationships among these concepts. In this way, ICML can support consistency
and completeness verification as well as enable further exploitations such as code generation.
In addition, by structuring the interface specification, ICML supports systems engineers in
systems integration activities, in which the integrated systems can produce the expected
behaviour and performance only if the interfaces are correctly used.

Currently, ICML addresses only simple and unidirectional radio interface specifications, in
particular signal in space interfaces. However, the language offers a potential for generalization
to other types of interfaces, including those based on state and on time-division multiplexing.
Further extensions are under analysis, and may be provided once UML and SysML-based
profiles have been implemented for ICML.

Below we describe the main characteristics of ICML, presenting an overall view of ICML
specification, an excerpt of the meta-model, a simple demonstrative example.

Overview of an ICML Specification
An ICML specification is structured as illustrated by the diagram in Figure 2. The diagram
describes structural and dynamic aspects of an interface.

Binary Coding

Logical Binary Structure

Physical Binary Coding

Physical Signal

Level 4

Level 3

Level 2

Level 1

LogicalBinary2
PhysicalBinary

(CP3to2)

LogicalBinary2
BinaryCoding

(CP3to4)

PhysicalBinary2
LogicalBinary

(CP2to3)

PhysicalSignal2
PhysicalBinary

(CP1to2)

Level 5
Data DefinitionDataDefinition2

BinaryCoding
CP5to4

BinaryCoding2
DataDefinition

(CP4to5)Custom Specification Refs to International
Standard

Custom Specification Refs to International
Standard

Custom Specification

Refs to International Standard

Logical
Level

Physical
Level

Binary Data Signals Synchronization Signals

Custom Specification

Refs to International Standard

Data Signals Carrier Signals

PhysicalBinary2
PhysicalSignal

(CP2to1)

Application Data Control Data

BinaryCoding2
LogicalBinary

(CP4to3)

Figure 2 Structure of ICML Specification (Gianni et al. 2011a) dambro@uniroma2.it Research @SEL

dambro@uniroma2.it

M&S-based Systems Engineering Book

Modeling and
Simulation-based
Systems Engineering
Handbook

by
Daniele Gianni
Andrea D’Ambrogio
Andreas Tolk

Pages: 464
Publisher: CRC Press, 2014
ISBN-10: 1466571454
ISBN-13: 978-1466571457

Modeling and
Simulation-Based
Systems Engineering
Handbook

editors Daniele Gianni
Andrea D’Ambrogio
Andreas Tolk

Research @SEL

